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Original article

Abstract: trialists and epidemiologists often employ different ter-
minology to refer to biases in randomized trials and observational 
studies, even though many biases have a similar structure in both 
types of study. We use causal diagrams to represent the structure of 
biases, as described by cochrane for randomized trials, and provide 
a translation to the usual epidemiologic terms of confounding, selec-
tion bias, and measurement bias. this structural approach clarifies 
that an explicit description of the inferential goal—the intention-to-
treat effect or the per-protocol effect—is necessary to assess risk of 
bias in the estimates. Being aware of each other’s terminologies will 
enhance communication between trialists and epidemiologists when 
considering key concepts and methods for causal inference.

(Epidemiology 2017;28: 54–59)

Randomized controlled trials (rcts) and observational 
studies are used to assess the causal effects of medical 

interventions.1 By definition, treatment strategies are ran-
domly assigned in rcts but not in observational studies. 
randomization, which prevents bias due to noncomparability 
between groups, is exploited in full when the data analysis fol-
lows the “intention-to-treat” principle.

another difference between some rcts and observa-
tional studies is masking (blinding) of trial participants and 
personnel, which can be achieved by using a placebo that is 
indistinguishable from the active treatment. Masking prevents 
differential care during follow-up, accounts for nonspecific 

effects associated with receiving an intervention (placebo 
effects), may facilitate blinding of outcome assessors, and 
may improve adherence.

Widespread use of masking and of intention-to-treat 
analyses became established by regulatory requirements, 
which privileged intention-to-treat analyses of double-blind 
placebo-controlled rcts to assess the efficacy of drugs 
before licensing. However, masking is sometimes not feasible 
(e.g., in surgical trials), and may not even be desirable (e.g., in 
pragmatic trials whose goal is estimating effects in real-world 
conditions). an intention-to-treat analysis is not feasible if 
trial participants are lost to follow-up and has disadvantages 
in safety and noninferiority trials.2

Discussions about the differences between rcts and obser-
vational studies can be complicated by the different terminology 
employed by trialists and epidemiologists.3 trialists often use the 
taxonomy of bias typified by the cochrane tool for assessing risk 
of bias in rcts: selection bias, performance bias, detection bias, 
attrition bias, reporting bias, and other bias.4,5 epidemiologists, on 
the other hand, tend to use the categories confounding, selection 
bias, and measurement (or information) bias.1,6,7

causal diagrams have been used extensively to rep-
resent biases in epidemiologic studies.8–14 these diagrams, 
represented as directed acyclic graphs, comprise variables 
(nodes) and arrows (directed edges). the absence of an arrow 
pointing from variable A to variable B indicates that variable A 
does not have a direct causal effect on B. a key advantage of 
causal diagrams is that they provide a mathematically rigorous 
yet intuitive tool for deducing the statistical independencies 
implied by the lack of causal arrows.1,8,9

Here, we use causal diagrams to represent the biases 
described in the cochrane risk of Bias tool, and provide a 
translation to the epidemiologic terms of confounding, selec-
tion bias, and measurement bias. For simplicity, we focus 
on individually randomized (not cluster randomized), paral-
lel group (not crossover) trials that compare two time-fixed 
treatment strategies. We start by reviewing the main types of 
causal effect that are of interest in rcts.

INTENTION-TO-TREAT EFFECT AND PER-
PROTOCOL EFFECT

the intention-to-treat effect is the effect of treatment 
assignment (or allocation).15 consider an rct in which 
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HiV-positive individuals are assigned to either initiating a new 
treatment Z = 1 or to continuing on their existing treatment 
Z = 0, and are followed until death or the end of follow-up at 
5 years. the outcome of interest is 5-year mortality Y (1: yes, 
0: no). the intention-to-treat effect is unbiasedly estimated by 
an intention-to-treat analysis that compares the mean outcome 
between those assigned to Z = 1 and Z = 0. For example, the 
intention-to-treat effect on the causal risk difference scale 
is unbiasedly estimated by the difference of the risks in the 
groups Z = 1 and Z = 0, which are readily computed from the 
study data.

the magnitude of the intention-to-treat effect in a par-
ticular study depends on the magnitude and type of adherence 
to the assigned treatment strategies. to see this, consider two 
rcts with identical eligibility criteria and that compare the 
same two strategies. in the first rct, only half of the patients 
assigned to the new treatment (Z = 1) end up actually taking it 
(A = 1); the other half do not take it (A = 0). in the second rct, 
all patients assigned to treatment take it (i.e., patients with Z = 1  
also have A = 1). in both studies, all patients assigned to Z = 0 
cannot take the new treatment because it is not available out-
side the study (i.e., patients with Z = 0 also have A = 0). even 
if the effect of the new treatment is identical in both studies, 
the intention-to-treat effect will generally differ between the 
two studies. For example, the intention-to-treat effect will be 
closer to the null in the first rct than in the second one if the 
effect of treatment goes in the same direction (beneficial or 
harmful) for all patients, and more beneficial in the first rct 
than in the second one if adherers tend to be those for whom 
treatment has a beneficial effect and non adherers tend to be 
those for whom treatment has a harmful effect.1 if the above 
rcts were head-to-head trials that assigned participants to 
two active treatments, then the intention-to-treat effect in the 
first rct might also be either closer or further from the null 
than that in the second rct.2

an alternative to the intention-to-treat effect that is not 
affected by the study-specific adherence to treatment is the 
per-protocol effect, that is, the causal effect that would have 
been observed if all patients had adhered to the protocol of 
the rct. Unfortunately, valid estimation of the per-proto-
col effect in the presence of imperfect adherence generally 
requires untestable assumptions.16

two common approaches to estimate the per-protocol 
effect are (i) comparing the outcomes of those who took treat-
ment A = 1 and treatment A = 0 (regardless of the treatment 
they were assigned to), for example, Pr[Y = 1|A = 1] − Pr[Y = 1 
|A = 0], and (ii) comparing the outcomes of those who took 
treatment A = 1 among those assigned to Z = 1 and treatment 
A = 0 among those assigned to Z = 0, for example, Pr[Y = 1 
|A = 1, Z = 1] − Pr[Y = 1|A = 0, Z = 0].) approach (i) is often 
referred to as an “as-treated” analysis and approach (ii) as a 
“per-protocol” analysis.2,8 neither approach is generally valid 
to estimate the per-protocol effect, as we discuss below. (g-esti-
mation and instrumental variable methods can sometimes be 

used to estimate some form of per-protocol effects even in the 
presence of unmeasured confounders in Figure 1c, D.16,17)

although “as-treated” and “per-protocol” analyses are 
potentially biased, the per-protocol effect may be of greater 
interest to patients and their clinicians than the intention-
to-treat effect. We now discuss how the potential for bias in 
effects estimated from rcts depends on whether the goal is 
to estimate the per-protocol or the intention-to-treat effect.

COCHRANE BIAS DOMAINS AND CAUSAL 
DIAGRAMS

the cochrane risk of Bias tool for randomized tri-
als covers six domains of bias.4,5 in the next sections, we 
use causal diagrams to show the structure of most of these 
biases, and discuss their correspondence to the epidemiologic 
terms of confounding, selection bias, and measurement bias. 
Because all these biases can occur under the null, we draw 
the causal diagrams under the causal null hypothesis, unless 
otherwise specified. (any causal structure that results in bias 
under the null will also cause bias under the alternative that 
treatment has an effect on the outcome, but the converse is not 
true.) For each bias, we explain whether it affects the inten-
tion-to-treat effect or the per-protocol effect. Our definition of 
bias is the same as in chapter 10 of reference [1] under either 
a randomization model or a correct population model.18,19

SELECTION BIAS
in its risk of bias tool, cochrane defines selection bias 

as the result of “systematic differences between baseline 
characteristics of the groups that are compared.”4 the pres-
ence of “systematic differences between baseline character-
istics” means that the distribution of prognostic factors varies 
between the groups being compared. the bias may affect the 
estimate of the intention-to-treat effect and/or the estimate of 
the per-protocol effect, depending on the definition of “groups 
that are compared.”

let us first consider the case in which the “groups that 
are compared” are the randomized groups Z = 1 and Z = 0. 
there are at least three reasons why differences in the distribu-
tion of risk factors may arise.

(i) the assignment of patients to a group is influenced 
by knowledge of which treatment they will receive.

FIGURE 1. Cochrane  selection  bias.  A,  Epidemiologic  con-
founding  in  an  intention-to-treat  analysis.  B,  Epidemiologic 
selection  bias  in  an  intention-to-treat  analysis.  C,  Epidemio-
logic selection bias in a per-protocol analysis. D, Epidemiologic 
confounding in an as-treated analysis.
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this bias can occur if the assignment that was not prop-
erly randomized or the randomized assignment was not suffi-
ciently concealed, and so the person enrolling participants was 
aware of allocation sequence and influenced which patients 
were assigned to each group based on their prognostic factors. 
this situation is depicted by the causal diagram in Figure 1a 
that includes the prognostic factors L (e.g., cD4 count, viral 
load) as common causes of the outcome Y and the assign-
ment Z. the arrow from L to Z may be due to the improperly 
randomized or insufficiently concealed allocation sequence. 
there are other causal diagrams that represent common causes 
of Z and Y (see, for example, chapter 7 of reference [1]); we 
chose the simplest.

epidemiologists refer to biases that arise from the pres-
ence of common causes as confounding. the existence of 
common causes L of assignment Z and outcome Y introduces 
confounding bias for the intention-to-treat effect in an inten-
tion-to-treat analysis that compares individuals in groups Z = 1  
and Z = 0, and for the per-protocol effect in a per-protocol 
analysis that compares individuals in groups Z = 1 and Z = 0  
with A = Z. in both cases, the cochrane risk of Bias tool 
refers to this bias as selection bias (table).

appropriate randomization, generation, and conceal-
ment of the allocation sequence, or adjustment for the prog-
nostic factors L removes the L → Z arrow and therefore the 
confounding bias.

even under perfect randomization procedures, random 
imbalances in prognostic factors may bias intention-to-treat 
effect estimates. this so-called chance confounding20 (some-
times referred to as allocation bias19 or accidental bias18,21,22) 
is quantitatively addressed by frequentist confidence intervals 
and is mitigated by adjusting for measured prognostic fac-
tors that are imbalanced.1,10 Unlike the structural confound-
ing depicted in Figure 1a, chance confounding is expected to 
become smaller as sample size increases.

(ii) the decision to recruit a patient is influenced by 
knowledge of which treatment the patient will receive.19,21

this bias can occur if an investigator is aware of the 
random sequence and decides to enroll patients with certain 
prognostic factors only if they are known to be assigned to 
a particular treatment strategy. the cochrane risk of Bias 
tool describes this problem: “Knowledge of the next assign-
ment […] can cause selective enrolment of participants on the 

basis of prognostic factors. Participants who would have been 
assigned to an intervention deemed to be “inappropriate” may 
be rejected.”4

the causal diagram in Figure 1B represents this sce-
nario. the node S is the selection into the trial (1: yes, 0: 
no), which depends on the values of assignment Z and prog-
nostic factors L. the box around S indicates that the analysis 
is restricted to those with S = 1. this bias arises from the 
selection of a subset of the potential study population into the 
analysis and, because S is a common effect of assignment and 
prognostic factors, both intention-to-treat and per-protocol 
analyses may be biased even if both effects are truly null. 
epidemiologists10 and cochrane refer to this bias as selection 
bias (table).

the elimination of this selection bias requires removing 
the Z → S arrow through appropriate concealment of the allo-
cation sequence, or adjustment for the prognostic factors L.

(iii) the decision to adhere to the assigned treatment is 
influenced by prognostic factors.

this may result in an imbalance between the groups  
A = 1 and A = 0, but not between the groups Z = 1 and Z = 0. 
therefore, this imbalance will not bias the intention-to-treat 
estimate, but will generally bias the per-protocol estimate of a 
naïve per-protocol analysis. this third case is not addressed by 
the cochrane risk of Bias tool.

the causal diagram in Figure 1c represents this sce-
nario. the node UA stands for common causes (e.g., symp-
toms resulting from severe immunosuppression) of adherence 
to treatment A and outcome Y.2 the node S is the variable 
 selection into the per-protocol population (1: yes, 0: no), 
which depends on the values of Z and A (S = 1 if Z = A, S = 0  
if Z ≠ A), and the analysis is restricted to those with S = 1.

epidemiologists may refer to this bias as selection bias 
because it arises from the selection of a subset (the per-pro-
tocol population) of the study population into an analysis that 
compares Z = 1 versus Z = 0. However, note that this selec-
tion bias for the per-protocol effect only arises when there is 
confounding of the effect of A due to common causes UA of 
A and Y.

regardless of whether we refer to this bias as confound-
ing or selection bias, reducing it requires either a masked 
design or a non-naïve, more realistic per-protocol analysis 
that adjusts for the variables UA or their proxies. Because a 

TABLE.  Translation of Cochrane Bias in Randomized Trials Domains into Common Epidemiologic Terms

Cochrane Bias Domain Epidemiologic Term Bias in Intention-to-treat Effect Bias in Per-protocol Effect

Selection bias confounding or selection bias Yes Yes

Performance bias Biased direct effect or confounding no Yes

Detection bias Measurement bias Yes Yes

attrition bias Selection bias Yes Yes

reporting bias nonstructural bias that cannot be 

represented in our causal diagrams

Yes Yes
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per-protocol analysis compares groups not entirely defined 
by randomization, the analysis is subject to the biases usually 
associated with observational studies.

Finally, let us consider the case in which the “groups 
that are compared” are the non randomized groups A = 1 and 
A = 0, that is, an as-treated analysis. Because as-treated analy-
ses are effectively observational analyses, their estimates of 
the per-protocol effect will be confounded in the presence of 
common causes of treatment A and the outcome Y. the struc-
ture of the bias is shown by the causal diagram in Figure 1D. 
in subsequent diagrams, we will omit the common causes of 
A and Y to avoid clutter and to focus the attention on the other 
sources of bias.

PERFORMANCE BIAS
the cochrane risk of Bias tool defines performance 

bias as the result of “systematic differences between groups in 
the care that is provided, or in exposure to factors other than 
the interventions of interest.”3 these differences may occur 
due to knowledge of the assigned treatment Z by study partici-
pants and thus will be less likely in masked trials.

again let us first consider the case in which the “groups 
that are compared” are the randomized groups Z = 1 and Z = 0. 
consider the causal diagram in Figure 2a, where O represents 
medical interventions that are forbidden by the study protocol 
(e.g., an intensive monitoring and treatment of cardiovascular 
risk factors) and UO represents unmeasured common causes 
of O and Y (e.g., risk factors for cardiovascular disease). the 
arrow from Z to O indicates that awareness of the assigned 
treatment might lead to changes in the behavior of study par-
ticipants or their doctors, which in turn may affect the out-
come, hence an arrow from O to Y. the interventions O are a 
result of assignment Z itself, and therefore just mediators of 
the effect of Z.

Because the intention-to-treat effect is the effect of 
assignment and part of the effect of assignment is mediated 
through O, then O cannot be viewed as a source of bias. the 
intention-to-treat effect naturally incorporates the effects of 
deviations from protocol, including the interventions O. that 
is, in an intention-to-treat analysis whose goal is to estimate 
the intention-to-treat effect, performance bias cannot occur. in 
epidemiologic terms, there is no confounding or selection bias.

However, the cochrane literature appears to suggest that 
performance bias can occur even in intention-to-treat analy-
ses. to explore this issue, consider two types of departures 
from intended interventions

(i) Departures from intended interventions that might 
happen in real life.

When trial participants receive interventions O that 
are prohibited by the protocol but that they would have also 
received outside of the trial, we believe that most people would 
agree with the conclusion that no performance bias exists in 
intention-to-treat analyses.

(ii) Departures from intended interventions that arise 
only because of the randomized trial context.

When trial participants receive interventions O that 
are prohibited by the protocol and that they would have not 
received outside of the trial, the intention-to-treat effect esti-
mated from the trial is relatively unhelpful for patients out-
side the trial. this may be a reason that cochrane uses the 
performance bias label for randomized trials. However, the 
use of the word “bias” in this context needs to be carefully 
qualified.

in the absence of any of the other biases discussed here, 
an intention-to-treat analysis of a trial in which interventions 
O occur is an unbiased estimator of the intention-to-treat effect 
in that particular trial context and population. the presence of 
interventions O, like other trial-specific characteristics (e.g., 
eligibility criteria, monitoring) do not affect the estimates’ 
internal validity but may affect their external validity (e.g., if 
the estimate cannot be transported to clinical contexts outside 
of the trial in which the interventions O are less frequent). in 
this case, it might be more appropriate to say that the inten-
tion-to-treat effect from the trial is not generalizable or trans-
portable to other settings rather than saying that it is “biased.”

another reason that cochrane uses the performance 
bias label for intention-to-treat analysis of randomized trials 
is that the implicit research question may not be about the pure 
intention-to-treat effect, but rather an intention-to-treat effect 
where the only deviation in protocol is non-adherence to the 
assigned treatment, that is, the research question is neither 
intention-to-treat effect nor per-protocol effect. thus, differ-
ent research questions might lead to different categorizations 
of bias.

Performance bias may occur when estimating the per-
protocol effect via either a per-protocol or an as-treated analy-
sis. there are at least two distinct reasons for the bias to arise.

Figure 2B depicts a setting in which deviations from pro-
tocol O are affected by the received treatment (e.g., because the 
use of certain therapies prompts doctors conduct tests for car-
diovascular risk factors that were forbidden by the protocol). 
the per-protocol effect is then the direct effect of treatment 
in the absence of those deviations from protocol O (e.g., if no 
tests for cardiovascular factors had been conducted). Unfortu-
nately, per-protocol and as-treated analyses will yield a biased 
direct effect (per-protocol) estimate whether they do or do not 

A B

C

FIGURE 2. Cochrane performance bias. A, Not a bias in inten-
tion-to-treat analyses. B, Biased direct effect in a per-protocol 
or as-treated analysis. C, Epidemiologic confounding a in per-
protocol or as-treated analysis.
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adjust for O (table). lack of adjustment will result in bias 
because the effect estimate will include the indirect effect as 
well; adjustment for O but not also for all confounders of the 
effect of O on the outcome (e.g., UO),11 will generally result in 
selection bias (in graph-theoretic terms, O is a collider).

Performance bias for the per-protocol effect may also 
have the same structure as confounding. Figure 2c repre-
sents a setting in which O operates as a confounder of the 
effect of A on Y. the arrow from O to A indicates that inter-
ventions not specified in the protocol (e.g., intensive moni-
toring of cardiovascular risk factors) may alter treatment 
received during the follow-up (e.g., the presence of cardio-
vascular risk factors leads doctors to prescribe a different 
type of antiretroviral therapy). With time-varying variables A 
and O, the structures represented in Figure 2B, c can occur 
simultaneously.

DETECTION BIAS
the cochrane risk of Bias tool defines detection bias 

as the result of “systematic differences between groups in how 
outcomes are determined.”4 this bias (also called observer, 
ascertainment, or assessment bias) occurs if knowledge of a 
patient’s assigned strategy influences outcome assessment. 
Figure 3a represents detection bias for the intention-to-treat 
effect. in this graph, the true outcome Y remains unmeasured 
and Y* represents the mismeasured outcome. the arrows from 
Z and Y to Y* represent that outcome measurement depends 
on both the true outcome Y and the treatment assignment Z. 
an intention-to-treat estimate of the effect of Z on Y* from 
Figure 3a will be biased for the intention-to-treat effect of Z 
on Y; the bias is a consequence of mismeasurement of Y, and is 
commonly referred to as “measurement bias” or “information 
bias” in epidemiology (table).1,6,12 the type of measurement 
error represented in Figure 3a is differential with respect to 
treatment assignment1,5 and therefore, like all other biases dis-
cussed previously, leads to bias even if Z has no effect on Y.

Detection bias may affect per-protocol effect estimates 
either directly if A affects Y*, as in Figure 3B, or indirectly, 
as in Figure 3c, if Z is a common cause of A and Y*. Mea-
surement bias in Figure 3a–c can be avoided by masking of 
outcome assessors, because it removes the Z → Y* arrow or 
the A → Y* arrow.

ATTRITION BIAS
the cochrane risk of Bias tool defines attrition bias as the 

result of “systematic differences between groups in withdrawals 
from a study.”4 the source of bias is differential loss-to-follow-up 
(e.g., drop out) or other forms of exclusions from the analysis. 
Figure 4a includes the censoring indicator C, which takes value 
1 for individuals excluded from the analysis. the box around  
C = 0 indicates that the analysis is restricted to those who were not 
excluded from the analysis. the arrow from Z to C indicates that 
withdrawal from the analysis is influenced by knowledge of the 
participant’s group assignment, for example, patients assigned to 
less potent combination antiretroviral therapy are more likely to 
not attend future visits if they were aware of their assigned treat-
ment. the arrow from L to C indicates that individuals with worse 
prognosis (L = 1) are more likely to be excluded than the others 
(with L = 0), because the severity of their disease prevents them 
from attending future study visits. in graph-theoretic terms, the 
intention-to-treat effect estimate is biased because, even under 
the null, the path Z → C ← L → Y is open when conditioning on 
the collider C. this bias is another example of what epidemiolo-
gists refer to as selection bias (table).1,10

the per-protocol effect estimate is also subject to attri-
tion bias. the bias may arise directly if A affects censoring  
C (e.g., subjects receiving A = 1 are at a greater risk of expe-
riencing side effects, which could lead them to dropout), as in 
Figure 4B, or indirectly, as in Figure 4c, if Z is a common cause 
of A and C. in Figure 4a, c, masking of participants and doc-
tors providing care can prevent attrition bias for intention-to-
treat and per-protocol effect estimates by removing the Z → C  
arrow, and thus blocking the biasing paths Z → C ← L → Y 
and A ← Z → C ← L → Y, respectively. adjustment for L also 
in Figure 4a–c also adjusts for selection bias.

REPORTING BIAS
the cochrane risk of Bias tool defines reporting bias 

as the result of “systematic differences between reported and 
unreported findings.”4 Outcome reporting bias may occur 
because so-called statistically significant effect estimates are 
more likely to be reported than nonsignificant effect estimates. 
then the average published result will be farther from the null 

FIGURE 4. Cochrane  attrition  bias.  A,  Selection  bias  due  to 
differential  loss  to  follow-up  in an  intention-to-treat analysis. 
B, Selection bias due to differential loss to follow-up in a per-
protocol or as-treated analysis. C, Selection bias due to differ-
ential loss to follow-up in a per-protocol or as-treated analysis.

A

C

B
A

C

B

FIGURE 3. Cochrane detection bias. A, Measurement bias due 
to outcome misclassification  in an  intention-to-treat analysis. 
B,  Measurement  bias  due  to  outcome misclassification  in  a 
per-protocol or as-treated analysis. C, Measurement bias due 
to  outcome misclassification  in  a  per-protocol  or  as-treated 
analysis.
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than the true average result, which will bias meta-analyses 
and systematic reviews.23 a similar bias, “stepwise selec-
tion,” results in inflated estimates for weak effects,  sometimes 
known as testimation (estimation after testing) bias.24–26 
reporting bias, which applies to both intention-to-treat 
and per-protocol effects, is negligible when treatment has a 
strong effect on the outcome or the trial size is very large.24,25

epidemiologists have long warned against the prob-
lems resulting from abuse of significance testing and selective 
reporting after multiple comparisons.27,28 Because reporting 
bias of individual studies is not a structural bias, it cannot be 
generally represented using the causal diagrams.

DISCUSSION
We described how the terminology used to describe 

similar biases differs between trialists and epidemiologists, 
and why an explicit specification of the causal target of each 
randomized trial is beneficial when discussing the risk of bias. 
For example, making the intention-to-treat effect the target 
allows trialists to stop worrying about some forms of “per-
formance bias.” On the other hand, making the per-protocol 
effect the target makes it clear that adjustment for pre- and 
post randomization confounding is needed, which has impli-
cations for the design and analysis of rcts.29

We encourage trialists and epidemiologists to be more 
explicit about their inferential goals. in particular, an open 
question is whether trialists conducting intention-to-treat 
analyses are really interested in the intention-to-treat effect. 
the per-protocol effect, which is not affected by differential 
implementation of the treatment strategies being compared, 
may often be the ultimate target.

causal diagrams help reduce confusion created by 
ambiguous terminology.30 For example, the term selection bias 
is used with different meanings by trialists and epidemiolo-
gists. Drawing the corresponding causal diagram helps resolve 
these confusions. the structural approach to bias using causal 
diagrams also shows that some biases that are described using 
different terms in the rct literature have the same structure. 
For example, Figures 1B and 4a are essentially the same apart 
from the time and reason for confounding.

Our simplistic graphical presentations of the cochrane 
selection, performance, detection, and attrition biases cannot 
possibly cover all possibilities. Specifically, in trials with time-
varying treatments and attrition, robins’s g-methods (g-formula, 
inverse-probability weighting, g-estimation) are generally needed 
to properly adjust for time-varying confounding and selection bias 
when estimating intention-to-treat and per-protocol effects.16,31
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